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We present a 1-D random particle process with uniform local interaction, which
displays some form of non-ergodicity, similar to contact processes, but more
unexpected. Particles, enumerated by integer numbers, interact at every step of
the discrete time only with their nearest neighbors. Every particle has two pos-
sible states, called minus and plus. At every time step two transformations
occur. The first one turns every minus into plus with probability b indepen-
dently from what happens at other places and thereby favors pluses against
minuses. The second one is ‘‘impartial.’’ Under its action, whenever a plus is a
left neighbor of a minus, both disappear with probability a independently from
presence and fate of other pairs of this sort. If b is small enough by comparison
with a2 and we start with ‘‘all minuses,’’ the minuses never die out.
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1. INTRODUCTION AND DECLARATION OF THEOREMS

The bulk of modern studies of interacting particle systems is based on the
assumption that the set of sites, also called the space, does not change in
the process of interaction. Elements of this space, also called components,
may be in different states, e.g., 0 and 1, often interpreted as absence vs.
presence of a particle, and may go from one state to another, which may be
interpreted as birth or death of a particle, but the sites themselves do not
appear or disappear in the process of functioning. Operators and processes,
which do not create or eliminate sites, will be called constant-length ones.
The main purpose of ref. 8 was to introduce a new class of one-dimensional



particle processes with continuous time, called variable-length processes. In
the present article we consider one process of this sort with discrete time.

We denote by R the set of real numbers, Z the set of integer numbers
and Z+ the set of natural numbers (including zero). We choose a non-
empty finite or countable set A, called alphabet, and call its elements
letters. We call a word in the alphabet A any finite sequence of terms,
everyone of which is an element of A. The length of a word is the number
of letters in it. Any letter may be treated as a word of length one. There is
the empty word, whose length is zero. Let us call the dictionary and denote
by dict(A) the set of words in the alphabet A. We assume that comma
and brackets do not belong to A and if we write several words and letters
one after another, perhaps, separated by commas and included in brackets,
they form one word (commas and brackets eliminated), which we call their
concatenation.

We consider a configuration space AZ, the set of bi-infinite sequences,
whose terms are elements of A. We call a thin cylinder any set of the form

{s ¥ AZ : si=ai for all i ¥ [m, n]}, (1)

where si are components of s, i.e., variables, whose values are elements
of A, and ai ¥ A are constants.

We consider probability measures, that is normed measures on AZ,
that is on the s-algebra generated by thin cylinders. In the usual way we
define translations on Z, then on AZ, then on the set of normed measures
on AZ and call a measure uniform if it is invariant under all translations.
We shall concentrate our attention on uniform measures. Dealing with
uniform measures, we may use the following simplified notation for any
word W=(a1,..., an):

m(W)=m(a1,..., an)=m(si+1=a1,..., si+n=an). (2)

Since m is uniform, the probability (2) does not depend on i and we call it
the frequency of the word W in the measure m. Any uniform measure on
AZ is determined by its values (2) on all words in the alphabet A. To form
a uniform measure, the numbers m(W) must be non-negative and for any
word W (including the empty one)

m(W)= C
a ¥ A

m(W, a)= C
a ¥ A

m(a, W), (3)

where (W, a) and (a, W) are concatenations of the word W and letter a in
the two possible orders. As is well-known, a measure can serve as a prob-
ability distribution if it is normed, that is its value on all the space is 1.
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A uniform measure is normed if its value on the empty word is 1. We
denote by MA the set of uniform measures on AZ. By convergence in MA

we mean convergence on all words in the alphabet A.
As usual, we write events and functions after measures. For example,

mf means the mean of the function f according to the measure m, m(E)
means the measure m of the event E, which is the same as mI(E), where
I(E) is the indicator function of E. When operators are involved, they are
written between measures and events or functions. For example, mPQ
means the measure obtained from measure m by application of operator P
first and application of operator Q second and mPQ(E) means the value of
this measure on the event E.

As usual, an operator P acting on MA is called linear if for any
a, b ¥ R and any m, n ¥ MA

(a · m+b · n) P=a · (mP)+b · (nP).

Operators with constant length, considered traditionally, typically were
linear. We shall see that even a simple variable-length operator may be non-
linear.

Our main results pertain to the case, when the alphabet A has only
two elements, which we denote by ı and À and call minus and plus. In
this case our operators act on M{ı , À}, the set of normed uniform measures
on configuration space {ı , À}Z. Let us define two operators acting on
M{ı , À} depending on parameters a, b, where b takes all values in [0, 1],
but 0 < a < 1, because the case a=0 is trivial and the case a=1 is trouble-
some.

The operator, which we call flip and denote by Flipb, is well-known. It
is constant-length and linear. Under its action any minus turns into plus
with probability b independently of others. We need to represent our
operators using independent auxiliary variables. Let us define Flipb, denot-
ing by xi ¥ {ı , À} for all i ¥ Z the coordinates of that space {ı , À}Z,
where the initial measure m is given. Also, we use mutually independent
variables Fi for all i ¥ Z, each taking two values called move and stay,
distributed according to a product-measure p, defined as follows:

Fi=˛move with probability b,
stay with probability 1 − b.

Finally, we have a third set of variables yi ¥ {ı , À} for all i ¥ Z, on
which the measure m Flipb is induced by the product of the measures m and
p with the map

yi=˛ı if xi=ı and Fi=stay,
À in all the other cases.

(4)
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Clearly, operator Flipb can be applied to any m ¥ M{ı , À} and produces
a measure in M{ı , À}, preserving the set of uniform normed measures.

The Annihilation operator Anna: M{ı , À} QM{ı , À} is variable-length
and seems to have never been mentioned except ref. 8. It is because of this
operator we decided to consider only uniform measures. Informally speak-
ing, whenever a word (À , ı) occurs in the infinite configuration, it disap-
pears with probability a independently of all the other occurences. Notice
that under the action of Anna the eliminated sites disappear completely
rather than go to another state. If we considered a similar process on finite
configurations, every act of elimination of a word (À , ı) would decrease
the length of the configuration by two. We shall define Anna as a superpo-
sition of two operators: Anna=Duela Clean (first Duela, then Clean). You
may imagine that when Duela is applied, a duel occurs between every pair
of À and ı occupying ith and (i+1)th sites respectively (in this order
only). If the command fire! is given, which occurs for every such pair
independently with a probability a, the duellists kill each other. Otherwise
the command stop! is given and nothing happens. When Clean is applied,
the dead bodies are disposed of and the live sites close ranks.

Now let us define operator Duela, a linear constant-length operator
transforming any measure on {ı , À}Z into a measure on {ı , À , í}Z,
where í is a third state introduced especially for this occasion and called
dead. States different from dead, that is minus and plus, are called live. Let
us call xi ¥ {ı , À}, i ¥ Z the coordinates of the space {ı , À}Z, where
the original measure m is defined. Also, we use mutually independent
variables A i for all i ¥ Z, each taking two values called fire and stop,
distributed according to a product-measure p, defined as follows:

Ai=˛ fire with probability a,
stop with probability 1 − a

(5)

for any i ¥ Z independently of all the other components and of the measure m.
We denote by yi ¥ {ı , À , í} the coordinates of the space, where the
measure m Duela is induced by the product of m and p, with the following
map:

yi=˛í if xi=À , xi+1=ı and Ai+1=fire,
í if xi − 1=À , xi=ı and Ai=fire,
xi in all the other cases.
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Also notice that m(À , ı) [ 1/2 for any m ¥ M{ı , À}, because m(À , ı)=
m(ı , À) and their sum does not exceed 1. Hence, since a < 1 and from the
definition of Duela

m Duela(í)=2a · m(À , ı) < 1. (6)

Now let us define a variable-length operator Clean: M{ı , À , í} Q

M{ı , À}. For any m ¥ M{ı , À , í} we directly express the values of m Clean on
all words in the alphabet {ı , À} in terms of the values of m on all words in
the alphabet {ı , À , í}. By definition, we set m Clean on the empty word
to be 1. For any non-empty word W=(a0,..., ak) ¥ dict(ı , À) we define
m Clean(W) as follows:

m Clean(a0,..., ak)

=
1

1 − m(í)
C
.

n1,..., nk=0
m(a0 í n1 a1 í n2 a2 · · · í nk − 1 ak − 1 í nk ak), (7)

where í n means the word consisting of n letters, everyone of which is í
(in fact, the empty word if n=0). So

a0 í n1 a1 í n2 a2 · · · í nk − 1 ak − 1 í nk ak

means the word, which starts with letter a0, then go n1 letters í (in fact,
none if n1=0), then goes letter a1, then n2 letters í , then letter a2, and so
on till nk − 1 letters í , then letter ak − 1, then nk letters í , and finally letter
ak and the summing is done over all n1,..., nk from zero to infinity. Notice
that the formula (7) is non-linear, whence the well-developed theory of
linear operators cannot be applied here, which adds to the difficulty of
dealing with variable-length processes. Notice also that in the case k=0
the formula (7) turns into

m Clean(ı)=
m(ı)

1 − m(í)
, m Clean(À)=

m(À)
1 − m(í)

. (8)

Is easy to prove that for any a < 1 the operator Anna=Duela Clean can be
applied to any measure in M{ı , À} and turns it into a measure in M{ı , À}.
Now let us declare our theorems. Let us denote by dı and dÀ the degen-
erate measures concentrated in the configurations ‘‘all minuses’’ and ‘‘all
pluses’’ respectively. For all natural t we denote

mt=dı (Flipb Anna) t. (9)
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Theorem 1. For all natural t the frequency of pluses in the measure
mt does not exceed 300 · b/a2.

Since dÀ is invariant for Flipb Anna with any a and b, Theorem 1
implies that the operator Flipb Anna cannot be ergodic whenever b <
a2/300 because in this case mt cannot tend to dÀ .

Theorem 2. If 2b > a, the measures mt tend to dÀ when t Q ..

Taken together, Theorems 1 and 2 show that the sequence of measures
mt has at least two different modes of behavior. In one mode (b > a/2)
these measures tend to dÀ when t Q . and in the other mode (b < a2/300)
they do not tend to dÀ .

Theorem 3. Take any m ¥ M{ı , À} and suppose that b > 0 and
(1 − b) · m(ı) [ 1/2. Then the measures m(Flipb Anna) t tend to dÀ when
t Q ..

Let us denote by s(a, b) the supremum of density of À in measure mt

for all natural t.

Theorem 4. For every a ¥ (0, 1), s(a, b) is not continuous as a
function of b.

Our theorems show similarity and difference between our process and
the well-known contact processes (see, e.g., refs. 3 and 4). Since our time is
discrete, it is better to compare our process with the well-known Stavskaya
process, a discrete-time version of contact processes. (See ref. 5 or Example 1.2
on pp. 8–10 of refs. 1 or 6 or Section 6.2 on p. 139 in ref. 7.) Using our
notations, Stavskaya process is a sequence of measures dı (Flipb Stav) t,
where the deterministic constant-length operator Stav: {ı , À}Z

Q {ı , À}Z

is defined by the rule

-s ¥ {ı , À}Z, k ¥ Z: (s Stav)k=˛À if sk=sk+1=À ,
ı otherwise.

The operator Stav favors minuses against pluses, because it turns any plus
into a minus whenever its right neighbor is minus, but never turns minuses
into pluses. The operator Flipb, on the contrary, turns minuses into pluses
with a rate b. It is natural that their composition behaves in different ways
for large vs. small b, namely, when b is large, minuses die out and when b

is small, they do not. Contact processes behave in a similar way. In our
case behavior is more unexpected: Flipb favors pluses for any b > 0,
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annihilation is ‘‘impartial,’’ but still minuses survive for b/a2 small enough.
Of course, ‘‘impartiality’’ of annihilation should be taken with a tongue
in the cheek. In fact, it favors that state, which already prevails—see our
Lemma 1.

Unlike our process, as shown by Theorem 3, Stavskaya process does
not tend to dÀ from initial measures in which minuses and pluses are mixed
at random in any proportion, provided initial density of minuses is positive
and b is small enough. What about our function s(a, b), for some situa-
tions (contact processes, percolation) its analogs have been proved to be
continuous. Theorem 4 shows that our process is different. In this respect
(lack of continuity) its behavior may be compared with a first order phase
transition. In a forthcoming paper, based on this one, we hope to prove an
analog of Theorem 1 for a more symmetric process, in which pluses and
minuses turn into each other independently with one and the same rate b.

2. PROOF OF THEOREMS 2, 3, AND 4.

Lemma 1. For any m ¥ M{ı , À}, if m(ı) [ 1/2, then m Anna(ı)
[ m(ı).

Proof. From the definition of Duela

m Duela(ı)=m(ı) − a · m(À , ı).

Hence, from (6) and from the definition of Clean

m Anna(ı)=
m(ı) − a · m(À , ı)

1 − 2a · m(À , ı)
,

where the denominator is positive since a < 1. Now, assuming that
m(ı) [ 1/2,

m(ı) − m Anna(ı)=m(ı) −
m(À) − a · m(À , ı)

1 − 2a · m(À , ı)

=
a · m(À , ı)(1 − 2m(ı))

1 − 2a · m(À , ı)
\ 0.

Lemma 1 is proved.

Proof of Theorem 3. Since m Flipb(ı)=(1 − b) · m(ı) and (1 − b) ·
m(ı) [ 1/2, the frequency of minuses in m Flipb does not exceed 1/2.
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Then, from Lemma 1, the frequency of minuses in m Flipb Anna also does
not exceed 1/2. Arguing in this way, we can prove by induction that the
frequency of minuses in m(Flipb Anna) t does not exceed (1 − b) t − 1/2 for all
t \ 1, and therefore tends to zero when t Q ., whence the measure tends
to dÀ . Theorem 3 is proved.

Now let us prove Theorem 2. Here the case b=0 is impossible and the
case b=1 is trivial, so let 0 < b < 1. If there is t such that (1 − b) ·
mt(ı) [ 1/2, Theorem 2 follows from Theorem 3. It remains to examine
the case when (1 − b) · mt(ı) > 1/2 for all t. We shall prove that this case is
impossible. Notice that

mt+1(ı)=
(1 − b) · mt(ı) − a · p

1 − 2a · p
, (10)

where we have denoted p=mt Flipb(À , ı). It is easy to prove that the
expression (10) is a growing function of p under our conditions. Since
m(À , ı) [ 1/2, whence a · m(À , ı) [ a/2, this implies that

mt+1(ı) [
(1 − b) · x − a/2

1 − a
,

where x=mt(ı). Therefore

mt+1(ı) − mt(ı) [ −
(b − a) x+a/2

1 − a
.

Here the right side is a linear function of x, which equals − a/(2 − 2a) at
x=1/(2 − 2b) and − (b − a/2)/(1 − a) at x=1. Both of these values are
negative, so

mt+1(ı) − mt(ı) [ m,

where m is a negative constant, whence mt(ı) tends to − . when t Q .,
which is impossible, because a probability cannot be negative. Theorem 2 is
proved.

Now let us assume that Theorem 1 is also proved and argue towards
Theorem 4. Notice that s(a, b) cannot take values in (1/2, 1), because if it
does, then there is t such that mt(À) > 1/2. But then, due to Theorem 3,
mt(À) tends to 1 when t Q ., whence s(a, b)=1. Thus for any a ¥ (0, 1)
s(a, b) equals 1 if b > a/2 due to Theorem 2, tends to 0 when b Q 0 due
to Theorem 1 and cannot take values in (1/2, 1) due to Theorem 3, so it
cannot be continuous. Theorem 4 is reduced to Theorem 1. The remaining
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part of the article is proof of Theorem 1. Starting now we assume that
b < a2/300 because otherwise Theorem 1 is obvious.

3. PROCESS n AND ITS GRAPHICAL REPRESENTATION.

Our proof of Theorem 1 is based on two well-known ideas: Peierls’
contour method and duality of planar graphs. Both ideas were used, for
example, in ref. 6 and if a reader finds it difficult to follow our arguments,
he or she may first look at that paper. Also you may look at the figure
placed in the Appendix at the end of this article, which illustrates ideas
presented below. Let us introduce a process n, which differs from our
original process in the following respect. It is not necessary to clean the
dead particles out at every time step. We may leave them where they are,
but in this case we have to sacrifice locality, namely we must organize
interaction of live particles as if dead particles were removed. Starting now,
we denote by x ¥ Z the space coordinate. We shall also use a natural
parameter y, which equals zero at the beginning and increases by one after
every application of Flipb or Anna. Thus y increases by two when t in the
formula (9) increases by one. Accordingly, we denote by F(x, t) and A(x, t)
and call basic variables those variables Fi and Ai, which participate in the
(t+1)th application of Flipb Anna. Thus our basic space is

W=({move, stay} × {fire, stop})Z · Z+

with coordinates

(F(x, t)), A (x, t)), where x ¥ Z, t ¥ Z+ (11)

and with a product measure p, according to which for all x, t

F(x, t)=˛move with probability b,
stay with probability 1 − b,

A(x, t)=˛ fire with probability a,
stop with probability 1 − a.

(12)

Let us denote

V={(x, y), x ¥ Z, y ¥ Z+}.

The sets of pairs (x, y) ¥ V with a given y are called y-levels or just levels.
Every pair (x, y) ¥ V has a state denoted by state(x, y), which equals ı ,
À or í and all their states are functions of w ¥ W defined in the following
inductive way.
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Base of Induction. state(x, 0)=ı for all x ¥ Z.

Induction step when y is even, say y=2t, where t ¥ Z+ (imitating the
action of Flipb). For all x ¥ Z:

state(x, 2t+1)=˛À if state(x, 2t)=ı and F(x, t)=move,

state(x, 2t) in all the other cases.

Induction step when y is odd, say y=2t+1, where t ¥ Z+ (imitating
the action of Anna, but without locality). For all x ¥ Z:

state(x, 2t+2)

=˛
í if state(x, 2t+1)=ı and A(x, t)=fire

and there is xŒ < x such that state(xŒ, 2t+1)=À
and -xœ ¥ Z: xŒ < xœ < x S state(xœ, 2t+1)=í;

í if state(x, 2t+1)=À and there is xŒ > x such that
state(xŒ, 2t+1)=ı and A(xŒ, t)=fire

and -xœ ¥ Z: x < xœ < xŒ S state(xœ, 2t+1)=í;
state(x, 2t+1) in all the other cases.

Informally speaking, in this process our particles never disappear and
keep the same integer indices, which they had at the beginning. If a particle
annihilates, it goes to the dead state í and remains in this state forever.
Live particles interact as if dead components did not exist. Thus we have
an inductionally defined map from W to {ı , À , í}V. We denote by n the
measure on {ı , À , í}V induced by the distribution p of the basic
variables (12) with this map and ny the distribution of states on the yth
level. The process n is useful for us because

n2t Clean=mt (13)

for all t, which is easy to prove by induction. Also it is easy to prove that

˛
(a) n(state(x, y)=ı) > 0 for all (x, y) ¥ V.
(b) For any integer x0 and any natural y

n(-x \ x0 : state(x, y) ] ı )
=n(-x [ x0 : state(x, y) ] ı )=0. (14)

(c) mt(ı) > 0 for all natural t.
(d) For any integer x0 and any natural t

mt(-x \ x0 : sx ] ı )=mt(-x [ x0 : sx ] ı )=0.
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Now we go to a graphical representation of the process n. In the
following text we shall ignore some events, whose probability is zero. So,
reading it, you should mentally insert ‘‘almost,’’ ‘‘almost all,’’ or ‘‘almost
sure’’ whenever necessary. For any w ¥ W we define a graph G. The figure
in the Appendix illustrates part of such a graph. Along with describing the
graph G, we shall describe how to draw it in a plane, representing vertices
by points and edges by curves (in fact, straight segments). The set of
vertices of G is

VG={(x, y) ¥ V, state(x, y) ] í}

and every vertex (x, y) is placed at the point (x, y) of the plane, where x
and y are the usual orthogonal coordinates, the axis x is horizontal and the
axis y is vertical. Graph G has two kinds of edges, which we call vertical
and horizontal. Let us describe them.

Vertical Edges. Any two vertices (x, y1), (x, y2) of G, where
y2 − y1=1, are connected with a vertical edge. Direction of this edge from
(x, y1) to (x, y2) is called north, the other direction is called south. We call
(x, y1) the south neighbor of (x, y2) and (x, y2) the north neighbor of
(x, y1).

Horizontal Edges. Any two vertices (x1, y), (x2, y) of G, where
x1 < x2, are connected with a horizontal edge if

-x ¥ Z: x1 < x < x2 S state(x, y)=í.

Direction of this edge from (x1, y) to (x2, y) is called east, the other direc-
tion is called west. We call (x1, y) the west neighbor of (x2, y) and (x2, y)
the east neighbor of (x1, y). Thus G, which has only those edges, which are
specified above, is defined. Its edges are represented by straight segments
connecting the points representing ends of the edge.

A vertex of G, whose level y is even, always has exactly one west
neighbor, exactly one east neighbor and exactly one north neighbor. Also it
has exactly one south neighbor, except the case y=0, when it has no south
neighbor. A vertex of G, whose level is odd, always has exactly one west
neighbor, exactly one east neighbor and exactly one south neighbor. Also it
has at most one north neighbor. Due to the definition of G, every vertex of
it is in a state À or ı ; in the former case we call it a À-vertex, in the latter
a ı-vertex.

It is evident that different edges G do not intersect except common
ends. We shall call the picture of G its representation in the plane just
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described. This picture cuts the plane into parts, which we call faces. We
assume that all the faces are closed. We call two faces neighbors if they
have a common edge. Our picture of G has exactly one unbounded face,
namely the bottom half of the plane. All the other faces of G are bounded
and we call them boxes. Every box has the form of a rectangle, sanwiched
between two parallel lines at levels y1 and y1+1, where y1 is natural, so it
may be denoted

{(x, y) ¥ R2 : x1 [ x [ x2, y1 [ y [ y1+1}. (15)

For every natural y1 the boxes sandwiched between the parallel lines at the
levels y1 and y1+1 form a bi-infinite sequence in which every two next
terms have a common side and which we call a horizontal corridor at sub-
(y1+1) level. Any box has at least four vertices placed at its corners and
has no more vertices on its west, east and north walls, so it has exactly one
west neighbor, one east neighbor and one north neighbor. If y1 is even, the
box (15) has no more vertices at its south wall, whence it has exactly one
south neighbor. If y1 is odd, this box (15) has 2k+1 south neighbors, where
k is the number of annihilations, which occured at the (y1+1)/2th appli-
cation of the operator Anna between sites x1 and x2.

Like in ref. 6, we use the well-known duality of pictures of graphs.
(See a detailed treatment in ref. 2.) Let us describe a graph, which we
denote by Ḡ, and its picture, which will be dual of the picture of G. We
place that vertex of Ḡ, which is dual of the box (15), at the point

1x1+x2

2
, y1+1 − e2 , (16)

where e > 0 is chosen for different boxes fifferently, but should be small
enough in every case; how small, we shall explain. We shall say that the
vertex (16) has a sub-(y1+1) level. We say that it has a sub-even level if
y1+1 is even and has a sub-odd level if y1+1 is odd. There is just one
subtlety: that vertex of Ḡ, which is dual of the only unbounded face of the
picture of G, is placed ‘‘infinitely far’’ in the negative direction of the axis y
and the edges leading to it are rays with the same direction. All the other
edges of Ḡ are straight segments connecting the points representing their
ends. Thus the graph Ḡ and its picture are defined. It is easy to see that for
any box the corresponding e can be chosen so small that the usual condi-
tions of dual pictures be fulfilled.

We shall call horizontal those edges of Ḡ, which are dual of vertical
edges of G and vertical those edges of Ḡ, which are dual of horizontal edges
of G. Notice that horizontal edges of Ḡ are approximatedly horizontal
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because values of e for all vertices of Ḡ are approximatedly equal to zero.
For any natural y the vertices of Ḡ, which are at sub-(y+1) level, and
horizontal edges, connecting them, form a bi-infinite path, which we call a
horizontal path at sub-(y+1) level and which is dual of the sub-(y+1)
corridor. Any bounded face of Ḡ is sandwiched between horizontal paths
at the levels sub-y and sub-(y+1). Unbounded faces of Ḡ are dual of ver-
tices of G at the level zero. They are unbounded half-strips, which fill all
the halfplane below the horizontal path at the sub-1 level. A face of Ḡ is
called a west (respectively east, north or south) neighbor of another face of
Ḡ if their corresponding vertices of G are in the same relation.

According to what we said about vertices of G at even levels, any face
of Ḡ at an even level has exactly one west neighbor, exactly one east
neighbor and exactly one north neighbor. Also it has exactly one south
neighbor, except the case y=0, when it has no south neighbor. Whenever
y > 0, we call these faces of Ḡ rectangles. In fact, all of them approxima-
tedly are rectangles. According to what we said about vertices of G at odd
levels, any face of Ḡ at an odd level has at most one north neighbor. If it
has one, we call it a trapezium, otherwise we call it a triangle. Indeed, these
faces approximatedly are trapeziums and triangles.

4. A CHAIN OF EQUALITIES AND INEQUALITIES

Starting now, we fix an arbitrary natural number T. Our overall goal
is to estimate mT(À) uniformly in T. Due to (14), mT(ı) is positive, so the
fraction mT(À)/mT(ı) makes sense and it is sufficient to estimate this
fraction. To reduce our task further, let us prove that

mT(À)= C
.

k=1
mT(ı , À k). (17)

Indeed, let us consider the event of presence of a plus at a certain site and
cut it into pieces according to the number of pluses on the left side of this
site. From item (d) of (14) this number is finite a.s. whence (17) follows.
Then from (17)

mT(À) [
mT(À)
mT(ı)

= C
.

k=1

mT(ı , À k)
mT(ı)

. (18)

To reduce our task further, we concentrate our attention on W0, the set
of those w ¥ W, for which state(0, 2T)=ı . For any w ¥ W0 we denote by
xmax(w) the smallest positive x such that state(x, 2T)=ı . Due to item (b)
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of (14), xmax(w) exists a.s. Let us call flowers all those pairs (x, 2T), where
0 < x < xmax(w), for which state(x, 2T)=À . We denote by f(w) the
number of flowers. Since xmax(w) exists a.s., f(w) is finite a.s. For any
k=1, 2, 3,... we denote by Wk the set of those w ¥ W0 for which f(w) \ k.
Notice that W0 ` W1 ` W2 ` · · · Let us prove for all k that

p(Wk)
p(W0)

=
mT(ı , À k)

mT(ı)
. (19)

Notice that p(W0)=n2T(ı). But from (13) and (8)

mT(ı)=n2T Clean(ı)=
n2T(ı)

1 − n2T(í)
,

whence

p(W0)=n2T(ı)=mT(ı)(1 − n2T(í)). (20)

On the other hand, Wk is the set of those w ¥ W0, for which the con-
figuration at the level 2T contains one of the words

ı í n1 À í n2 · · · À í nk − 1 À í nk À

starting at the 0th component. Therefore

p(Wk)= C
.

n1,..., nk=0
n2T(ı í n1 À ,..., í nk À).

But from (13) and (7)

mT(ı , À k)=n2T Clean(ı , À k)

=
1

1 − n2T(í)
C
.

n1,..., nk=0
n2T (ı í n1 À ,..., í nk À).

Thus

p(Wk)=mT(ı , À k) · (1 − n2T(í)).

Dividing this by (20), we get (19). Now we can sum (19) over k and use (18)
to obtain

mT(À)
mT(ı)

= C
.

k=1

mT(ı , À k)
mT(ı)

= C
.

k=1

p(Wk)
p(W0)

. (21)
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Remember an old gardener’s wisdom: no flowers without roots. Let us
take any w ¥ W1 and call a path in G north-west if its every step goes north
or west. Let us call a vertex of G a root if there is a north-west path from
this vertex to some flower, all the vertices of this path having a state À . In
particular, all the flowers are roots. Vertices of G, which are not roots, are
called non-roots. The set of roots is finite a.s. for the same reason why the
set of flowers is finite a.s., namely because T is fixed and therefore xmax(w)
exists a.s. Our estimation is based on building a ‘‘contour’’ around all the
roots. Let us call a set S of vertices of a graph connected in this graph if for
any two elements of this set there is a path in this graph connecting them,
in which all the vertices belong to S.

Lemma 2. For any w ¥ W1: (a) The set of roots is non-empty, finite
and connected in G. (b) The set of non-roots is infinite and connected in G.

Proof. Most of these statements are evident. To prove that the set of
non-roots is connected, let us denote by Sin the set of those (x, y), for
which 0 < x < xmax(w) and 0 < y [ 2T. We denote by Sout the set of those
vertices of G, which do not belong to Sin. It is evident that all the roots
belong to Sin and that Sout is connected. It remains to prove that any non-
root in Sin is connected with Sout by a path, which avoids roots. Let us take
any non-root (x0, y0) ¥ Sin and define the set S0 as follows: a vertex (x, y)
belongs to S0 if there is a path in G connecting (x, y) with x0, y0, all the
vertices of which are non-roots. Let us denote by t0 the minimal level of
elements of S0. Now let us look for the most western one of those elements
of S0, which are at the level t0. If it does not exist, then (s0, t0) is connected
with Sout with a path avoiding roots. Let us assume that it exists. If its state
is À , then it is a root, because its west neighbor is a root. If its state is ı ,
then its south neighbor’s state also is a minus, hence it is a non-root, which
contradicts our choice of t0. In both cases we get a contradiction. Lemma 2
is proved.

Let us call dual-roots those faces of Ḡ, which are dual of roots, and
denote by U the union of dual-roots. Since every dual-root is bounded, U is
also bounded and closed since we assume all faces to be closed. Hence from
Lemma 2, U is homeomorphic to a closed disk (provided the set of roots is
finite). Then the boundary of U is a closed curve, which includes the east
side of the rectangle dual of the vertex (0, 2T). So this closed curve inclu-
des V0, the north end of this side, and we may assume that it starts and
ends at V0 and surrounds U in the counter-clockwise direction. This curve
can be represented as a path in Ḡ, which we denote by tour(w) because it is
determined by w. Now we need to classify all the possible forms of tour(w).
To this end we need to classify all steps which tour(w) may include, that is
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Table I

Associated Associated
Step in G starting at a À -vertex Type event variable

Step west at an even level 1 trivial none
Step west at an odd level 1Œ trivial none
Step from (x, 2t+1) 2 F(x, t)=move F(x, t)

to (x, 2t) if F(x, t)=move
Step from (x, 2t+1) 2Œ F(x, t)=stay F(x, t)

to (x, 2t) if F(x, t)=stay
Step south from an even to an odd level 2ŒŒ trivial none
Step from (x, 2t+1) 3 A(x, t)=fire A(x, t)

to its east neighbor if A(x, t)=fire
Step from (x, 2t+1) 4 A(x, t)=stop A(x, t)

to its east neighbor if A(x, t)=stop
Step east at an even level 4Œ trivial none
Step north 5 trivial none

some steps in Ḡ. We shall start by classifying some steps in the original
graph G. Let us call types elements of the set

{1, 1Œ, 2, 2Œ, 2œ, 3, 4, 4Œ, 5}. (22)

We shall attribute types to those and only those steps in G, which start at
À-vertices. All the cases, which may occur, are listed in Table I.

Steps, having the word ‘‘trivial’’ in the third column, are called trivial,
other steps are called non-trivial. To every step in G, which has a type, we
attribute an associated event. For every trivial step the associated event is W

and is also called trivial. Non-trivial events are represented in Table I by
their conditions. For every non-trivial step we also define an associated
basic variable, which is shown in the last column. Also every step in G,
which has a type, has a chance. For typographical reasons chances are
shown in the next table, but you can easily infer them right now because
chance always equals the probability of the associated event. We shall use
the same 1-to-1 correspondence between steps in G and steps in Ḡ as was
defined in ref. 6 and in more detail in ref. 2. Here it is:

If an edge ē of Ḡ is dual of an edge e of G, then for each direction of
e the dual direction of ē is the direction from right to left when we go
along e in the given direction.

ˇ (23)

910 Toom



Table II

Step in Ḡ having a À-face on its left side Type Chance Shift

Step south across an even level 1 1 (0, −1)
Step south across an odd level 1Œ 1 (0, −1)
‘‘move’’ step east at a sub-odd level 2 b (1, 0)
‘‘stay’’ step east at a sub-odd level 2Œ 1 − b (1, 0)
Step east at a sub-even level 2œ 1 (1, 0)
‘‘fire’’ step north across an odd level 3 a (−1, 1)
‘‘stop’’ step north across an odd level 4 1 − a (0, 1)
Step north across an even level 4Œ 1 (0, 1)
Step west 5 1 (−1, 0)

Type, event and chance, attributed to a step in G, are attributed to its
dual step in Ḡ also. Since a step in G has a type if and only if it starts from
a À-vertex, a step in Ḡ has a type if and only if it has a À-face on its left
side.

You may imagine Tables I and II as one table, which is cut into two
parts for typographical reasons. The last column of Table II shows shifts
defined for all types. Shift is a two-dimensional vector, whose components
are called Hshift and Vshift (abbreviations for horizontal shift and vertical
shift). The first column of Table II is formally redundant because it follows
from what was said in the first column of Table I; however, it helps to
understand why shifts are defined in this way. Chances shown in the third
column equal probabilities of events shown in the previous table.

Lemma 3. For any w ¥ W1: (a) all the steps of the path tour(w) have
types and (b) the path tour(w) is a concatenation of two paths, which we
denote by bag(w) and lid(w), with the following properties: all the steps of
bag(w) have types different from 5; lid(w) has f(w) steps, all of which
have type 5.

Proof of (a). Since every step in tour(w) has a À-face on its left side,
it has a type.

Proof of (b). Let us call dual-flowers those faces of Ḡ, which are dual
of flowers. Notice that all of them are rectangles. Let us follow the contour
of U in the opposite, that is clockwise, direction starting at V0. Then our
first f(w) steps will pass north sides of dual-flowers in the east direction.
Therefore, the last f(w) steps of tour(w) are north sides of dual-flowers
passed in the west direction. Now notice that if a step in tour(w) has type 5,
it has a dual-flower on its left side. Indeed, if a step of tour(w) has type 5,
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it has a root on its left, that is south, side and a non-root on its right, that
is north, side. Since Flipb cannot turn pluses into minuses, this is possible
only if this step has a flower on its left side. Also notice that if some step of
tour(w) has type 5, then all the steps following it (if any) also have types 5.
Indeed, this step has a dual-flower on its left side. But then it is at the sub-
(2t+1) level, whence the next step, if any, has to be in the same direction,
that is west, and on the same level, that is also at the north side of a dual-
flower, so its type is 5. Lemma 3 is proved.

Let us examine bag(w). We start by two observations:

(a) If bag(w) includes a step type 2, then this step has a
ı-face on its right (that is, south) side.

(b) If bag(w) includes a step type 3, 4 or 4Œ, then this step
has a ı-face on its right (that is, east) side.

ˇ (24)

Indeed, in both cases, if there were a À-face there, it would be a dual-
root, but the contour surrounding U cannot separate dual-roots from each
other.

Any sequence of types is called a code. By shift of a code we mean the
sum of shifts of its terms and by chance of a code we mean the product of
chances of its terms. If all the steps of a path p have types, we denote
code(p) and call the code of p the sequence of types of steps of p. By shift
and chance of such a path we mean shift and chance of its code. From
Lemma 3, bag(w) has a code and we need to study it. Let us call a path in
Ḡ well-placed if it starts at V0, all its steps have types and all the basic
variables associated with its steps are independent from each other and
from W0. Given some w ¥ W0 and a code C, we say that w realizes C if the
graph Ḡ contains a well-placed path p, such that the code of p equals C.

Lemma 4. Every w ¥ W1 realizes the code of bag(w).

Proof. Let us classify all the basic variables F (x, t) and A(x, t),
whose parameter t is between zero and T, into two classes: left basic
variables—those with x [ 0 and right basic variables—those with x > 0. Let
us denote by Aleft the s-algebra generated by the left basic variables and
Aright the s-algebra generated by the right basic variables. Of course, any
event in Aright is independent from any event in Aleft. Let us prove that
W0 ¥ Aleft. This follows from a more general statement: for any y \ 0, any
n \ 0 and any a−n,..., a−1 ¥ {ı , À , í} the event

state(−n, y)=a−n, state(−n+1, y)

=a−n+1,..., state(−1, y)=a−1, state(0, y)=ı
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belongs to Aleft. This statement is easy to prove by induction in y. Now
notice that for any w ¥ W1 all the basic variables associated with steps of
tour(w) belong to Aright and are different from each other because the
contour of U cannot pass one and the same edge twice. Hence tour(w) is
well-placed. Lemma 4 is proved.

For any code C we denote by real(C) the set of those w ¥ W0, which
realize C. It is easy to prove for any code C by induction in the length of
codes that

p(real(C))
p(W0)

[ chance(C). (25)

Hence, due to Lemma 4, for any k

p(Wk)
p(W0)

[
; p(real(code(bag(w))))

p(W0)
[ C chance(bag(w)), (26)

where both sums are taken over all different code(bag(w)) for w ¥ Wk.
To estimate the last sum, for every natural k we define a set of codes, which
we denote LCk and whose elements we call k-legal codes. A code C=
(c1,..., cn) belongs to LCk if it satisfies the following conditions:

˛
(LC-a) c1=1 and cn=4Œ.
(LC-b) All the terms of C belong to the list 1, 1Œ, 2, 3, 4, 4Œ.
(LC-c) All the pairs (ci, ci+1) belong to the list

11Œ, 1Œ1, 1Œ2, 21, 22, 23, 24, 31Œ, 34Œ, 44Œ, 4Œ2, 4Œ3, 4Œ4.
(LC-d) Hshift(C) \ k and Vshift(C)=0.

(27)

Since LC1 ` LC2 ` LC3 ` ..., we denote LC=LC1 and call elements
of LC just legal codes. Of course, the definition of legal codes is chosen to
fit codes of bag(w) as the following shows.

Lemma 5. For all w ¥ Wk the code of bag(w) belongs to LCk.

Proof. let us prove in turn that the code of bag(w) satisfies all the
conditions of (27).

Proof of Condition (LC-a). The code of bag(w) starts with 1
because our path starts with the east side of the face (0, 2T), passing it
from north to south, so, according to Table II, its type is 1. The code of
bag(w) ends with 4Œ because bag(w) can make a step to the topmost level
from a lower level only by a step type 4Œ.
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Proof of Condition (LC-b). From Lemma 3, the code of bag(w)
cannot contain 5. Let us prove that code(bag(w)) cannot contain 2Œ or 2œ.
Indeed, suppose that some step in bag(w) has type 2Œ or 2œ. Then this step
has a root on its left, that is north side. But then its south side also is a
root, which is impossible, since steps of tour(w) cannot separate roots from
each other.

Proof of Condition (LC-c). Let us present several arguments, due to
which all the combinations of types (ci, ci+1), not included in our list, are
impossible in the code of bag(w).

• Pairs, in which the first term is in the set {1, 3, 4} and the second
term is in the set {1, 2, 3, 4}, are impossible, because the first term ends at a
sub-even level, but the second term starts at a sub-odd level.

• Pairs, in which the first term is in the set {1Œ, 2, 4Œ} and the second
term is in the set {1Œ, 4Œ}, are impossible, because the first term ends at a
sub-odd level, but the second term starts at a sub-even level.

• Pairs, in which the first term is in the set {1, 1Œ} and the second term
is in the set {3, 4, 4Œ}, are impossible. To prove this, notice that from every
vertex of Ḡ there goes exactly one step north, so these steps have to follow
one and the same edge, but the first term needs a À face on the east side,
while the second term needs a ı face on the east side due to (24).

• Pairs, in which the first term is 4 and the second term is 1Œ, are
impossible, because type 4 means that there was no annihilation, so the
face on any side of the step having type 4 cannot be a triangle, so the next
step cannot go south as 1Œ does.

• Pairs, in which the first term is 4Œ and the second term is 1, are
impossible, because they have to follow one and the same edge, but the face
on the east side of the step having type 4Œ must have state ı , while the face
on the east side of the step having type 1 must have state À .

Proof of Condition (LC-d). Remember the classification of bounded
faces of Ḡ into rectangles, trapeziums and triangles. It is easy to check that
the sum of shifts of steps in going around every of these faces is zero. Now
let us notice that if two opposite steps in Ḡ (that is, steps passing one and
the same edge in opposite directions) have shifts, the sum of their shifts is
zero. Indeed, due to (24), no step opposite of a step type 3 can have a shift
because it has a ı-face on its left side. All the other steps can be classified
into four categories, south, east, north and west, so that a step opposite of
south is always north, opposite of north is always south, opposite of west is
always east and opposite of east is always west and their shifts cancel. Now
let us prove that the contour, surrounding U, has shift (0, 0). As we have
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noticed, the sum of shifts in going around each face included in this union
is (0, 0). Hence the sum of all these shifts also is (0, 0). Every side, which
does not belong to the contour of the union, belongs to two faces included
in it, and is passed in both directions, so these entries cancel, whence
tour(w) also has shift (0, 0). But from Lemma 3 tour(w) is a concatenation
of bag(w) and lid(w), so the sum of their shifts is (0, 0). Since lid(w) con-
sists of f(w) steps type 5, everyone of which has shift (−1, 0), the shift of
lid(w) is (−f(w), 0), whence the shift of bag(w) is (f(w), 0). Lemma 5 is
proved.

It follows from Lemma 5 and (26) that for all natural k

p(Wk)
p(W0)

[ C
C ¥ LCk

chance(C)). (28)

To finish our argument, we need to make a numerical estimation, but
it will be too cumbersome to do with so many types. To reduce their
number to four, we call main types the elements of the set {1, 2, 3, 4}. All
the quantities defined for types are valid for main types. In particular,
every main type has a shift and a chance listed in Table II and shown again
in Table III. Also every main type has a rate, which is shown in the same
table:

A main code is a finite sequence, all the terms of which are main types.
Its rate is the product of rates of its terms. For any code C we denote by
short(C) the main code obtained from C by deleting all its non-main terms.
We shall simplify our task by dealing with short(code(bag(w))) instead of
code(bag(w)). For every natural k we define the set LMCk, whose elements
are called k-legal main codes. By definition, a k-legal main code is a main
code C=(c1,..., cn), which satisfies the following conditions:

˛
(LMC-a) c1=1
(LMC-b) For every i=1,..., n − 1 it is impossible that

(ci=1, ci+1=3) or (ci=1, ci+1=4) or (ci=4, ci+1=1).
(LMC-c) cn equals 3 or 4.
(LMC-d) Hshift(C) \ k.
(LMC-e) Vshift(C) \ 0.

(29)

Since LMC1 ` LMC2 ` LMC3 ` ..., we denote LMC=LMC1 and
call elements of LMC just legal main codes. You may notice also that from
LMC-a), LMC-b) and LMC-c) any legal main code has length at least
three, so in fact LMC=LMC3, but we shall not use it. For any legal main
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Table III

Main type Shift Chance Rate

1 (0, −1) 1 1
2 (1, 0) b 2 b

3 (−1, 1) a a

4 (0, 1) 1 − a 1 − a

code C let us denote by Long(C) the set of legal codes CŒ such that
C=short(CŒ). It is easy to observe that if CŒ ¥ Long(C), then CŒ can be
obtained from C by the following procedure:

˛
(a) We start with C.
(b) After every 1 we insert 1Œ.
(c) After every 4 we insert 4Œ.
(d) Whenever 3 is followed by 1, we insert 1Œ between them.
(e) Whenever 3 is followed by 2, we insert either 1Œ or 4Œ between them.
(f) Whenever 3 is followed by 3, 4, or 5, we insert 4Œ between them.

(30)

Also it is easy to prove that for any main code C and any
CŒ ¥ Long(C)

Hshift(CŒ)=Hshift(C), (31)

Vshift(CŒ) [ 2 · Vshift(C). (32)

Here (31) is true because CŒ is obtained from C by inserting only types 1Œ

and 4Œ, both of which have Hshift=0. To prove (32), let us classify main
types into horizontal, namely 2, whose Vshift is zero, and vertical, namely
all the others. Due to the rule (30) we can establish a 1-to-1 correspondence
between vertical terms of C and the terms inserted after them in the course
of this procedure. Then Vshift of every newly inserted term is not greater
than Vshift of the corresponding vertical term of C. Hence (32) immedi-
ately follows.

Lemma 6. For any k, if C ¥ LCk, then short(C) ¥ LMCk.

Proof. Let us assume that C ¥ LCk and prove that short(C) satisfies
all the conditions of (29).
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Proof of (LMC-a). Is evident.

Proof of (LMC-b). Impossibility of (1, 3). If there is such a combi-
nation in short(code(bag(w))), then there is a combination (1, 1Œ, 3) in
code(bag(w)), but combination (1Œ, 3) is impossible there according to
(LC-c). Impossibility of (1, 4). If there is such a combination in
short(code(bag(w))), then there is a combination (1, 1Œ, 4) in code(bag(w)),
but combination (1Œ, 4) is impossible there according to (LC-c). Impossi-
bility of (4, 1). If there is such a combination in short(code(bag(w))), then
there is a combination (4, 4Œ, 1) in code(bag(w)), but combination (4Œ, 1) is
impossible there according to (LC-c).

Proof of (LMC-c). Due to (LC-a), the last term of C is 4Œ. Due to
(LC-c), the preceeding term of C is 3 or 4, and this term becomes the last
term of short(C) when 4Œ is eliminated.

Proofs of (LMC-d) and (LMC-e). Follow from (31) and (32).
Lemma 6 is proved. Now we can estimate the sum in the right side of

(28). Due to Lemma 6 we can represent this sum as

C
CŒ ¥ LCk

chance(CŒ)= C
C ¥ LMCk

C
CŒ ¥ Long(C)

chance(CŒ). (33)

Let us estimate the right side. Due to the item (e), the result of the
procedure (30) is not unique, generally speaking. However, the number of
different possible outcomes, that is cardinality of Long(C), does not exceed
2m, where m is the number of those terms of C, which equal 2. Also notice
that chance(CŒ)=chance(C) whenever CŒ ¥ Long(C) because chance(1Œ)=
chance(4Œ)=1. Thus for any C ¥ LMCk

C
CŒ ¥ Long(C)

chance(CŒ) [ 2m · chance(C) [ rate(C),

where m has the same meaning. Substituting this into (33) we obtain

C
CŒ ¥ LCk

chance(CŒ)) [ C
C ¥ LMCk

rate(C). (34)

It remains to prove this:

C
.

k=1
C

C ¥ LMCk

rate(C) [
300 · b

a2 . (35)
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Instead we shall prove this:

C
C ¥ LMC

Hshift(C) · rate(C) [
300 · b

a2 . (36)

This is sufficient because the left sides of (35) and (36) are equal.
For any integer x and y, natural z and k ¥ {1, 2, 3, 4} we denote by

Sk(x, y, z) the sum of rates of main codes satisfying conditions (LMC-a)
and (LMC-b) of the definition of legal main codes, whose Hshift equals x,
whose Vshift equals y and which have z terms, the last of which is k.
It follows from the definition of Sk(x, y, z) and conditions (LMC-c), (LMC-d),
and (LMC-e) of (29) that

C
C ¥ LMC

Hshift(C) · rate(C) [ C
.

x=1
C
.

y=0
C
.

z=1
x · (S3(x, y, z)+S4(x, y, z)). (37)

Due to condition (LMC-a) of (29), the numbers Sk(x, y, z) satisfy the
initial condition

Sk(x, y, 1)=˛1 if x=0, y=−1, and k=1,

0 in all the other cases

and due to condition (LMC-b) they satisfy the transition equations

˛
S1(x, y, z+1)=S1(x, y+1, z)+S2(x, y+1, z)+S3(x, y+1, z),
S2(x, y, z+1)=2b · (S1(x − 1, y, z)+S2(x − 1, y, z)

+S3(x − 1, y, z)+S4(x − 1, y, z)),
S3(x, y, z+1)=a · (S2(x+1, y − 1, z)+S3(x+1, y − 1, z)

+S4(x+1, y − 1, z)),
S4(x, y, z+1)=(1 − a) · (S2(x, y − 1, z)+S3(x, y − 1, z)+S4(x, y − 1, z)).

To estimate (37), let us use sums

˛
S1(z)= C

.

x=−.

C
.

y=−.

p−xq−yS1(x, y, z),

S2(z)= C
.

x=−.

C
.

y=−.

p−xq−yS2(x, y, z),

S3(z)= C
.

x=−.

C
.

y=−.

p−xq−yS3(x, y, z),

S4(z)= C
.

x=−.

C
.

y=−.

p−xq−yS4(x, y, z),

(38)
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where p, q are positive parameters, which we need to choose. The following
values are sufficient to obtain our estimations:

p=1/3 and q=1 − a/6. (39)

However, it is convenient to keep using letters p and q for a while. Due to
our choice of p and q and since x < 3x for all integer x, the sum (37) is
estimated by

C
.

z=1
(S3(z)+S4(z)), (40)

so it remains to estimate the sum (40).
The quantities (38) satisfy the initial conditions

S1(1)=
1
q

, S2(1)=S3(1)=S4(1)=0

and recurrence conditions

˛
S1(z+1)=q(S1(z)+S2(z)+S3(z)),

S2(z+1)=2b/p(S1(z)+S2(z)+S3(z)+S4(z)),

S3(z+1)=pa/q(S2(z)+S3(z)+S4(z)),

S4(z+1)=(1 − a)/q(S2(z)+S3(z)+S4(z)).

Notice that S3(z) and S4(z) are proportional, namely for every z they
relate as p · a to (1 − a), so we may go to other quantities

Sg
1 (z)=S1(z), Sg

2 (z)=S2(z), Sg
3 (z)=S3(z)+S4(z)

with initial conditions

Sg
1 (1)=

1
q

, Sg
2 (1)=Sg

3 (1)=0 (41)

and recurrence conditions

˛Sg
1 (z+1)=q(Sg

1 (z)+Sg
2 (z))+p · a/r Sg

3 (z),
Sg

2 (z+1)=2b/p(Sg
1 (z)+Sg

2 (z)+Sg
3 (z)),

Sg
3 (z+1)=r(Sg

2 (z)+Sg
3 (z)),
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where we have denoted

r=
(1 − a)+p · a

q
. (42)

Introducing a vector Sg(z)=(Sg
1 (z), Sg

2 (z), Sg
3 (z)), we can write these

recurrence conditions as Sg(z+1)=Sg(z) · M, whence Sg(z)=Sg(1) · Mz − 1,
where M is the matrix

M=R q 2b/p 0
q 2b/p r

p · a/r 2b/p r

S .

Notice that in the spirit of our article we write matrices on the right
side of vectors, so vectors are horizontal. Eigen-vectors of M are roots of
the equation

|M − lmax · E|=0

(where E is the identity matrix), which can be simplified to

2b · (l2 − (1 − a))=pl(l − q) (l − r). (43)

Let us first consider the case b=0. In this case all the eigen-values of M
can be written explicitly: they equal q, r and zero and it is easy to show that
q > r > 0 for all a, so q is the greatest eigen-value.

Now let b > 0. Remember that b [ a2/300. From Perron–Frobenius
theorem, M has the ‘‘maximal’’ eigen-value lmax, which is real and positive
and which is not less than absolute values of all the other eigen-values of
M. If b=0, lmax=q and it is strictly greater than all the other eigen-values
(which are real and non-negative in this case, as we have seen). When b

grows from zero to a2/300, lmax also grows and still exceeds absolute
values of all the other eigen-values.

All the components of the eigen-vector V corresponding to lmax can be
chosen real and non-negative. In the present case the first component of V
is not zero, so we may assume that V=(V1, V2, V3) is normed in such a way
that V1=1. Then all the components of our initial vector (41) are not
greater that the corresponding components of the vector V multiplied by
6/5, because

Sg
1 (1)=

1
q

[
6
5

V1, Sg
2 (1)=0 [

6
5

V2, Sg
3 (1)=0 [

6
5

V3.
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Hence and from non-negativity of all elements of M,

Si(z) [ 6
5 Vi · lz

max for all z and i.

Therefore Sg
3 (z) [ 6/5 · V3 · lz

max, whence we can estimate the sum (37) as
well as the sum (40) as follows:

C
.

z=1
(S3(z)+S4(z))= C

.

z=1
Sg

3 (z) [
6
5

· V3 · C
.

z=1
lz

max=
6
5

·
V3

1 − lmax
. (44)

To estimate this expression, we need to estimate V3 from above and
1 − lmax from below. Let us first estimate 1 − lmax, for which we need to
estimate lmax. From (43)

lmax − q
2b

=
l2

max − (1 − a)
plmax(lmax − r)

. (45)

To estimate lmax we need to estimate the left side of this expression. First
we estimate the numerator of the right side:

l2
max − (1 − a) [ 1 − (1 − a)=a.

Now to estimate the denominator. Since p=1/3 and lmax \ q=1 −
a/6 \ 5/6,

p · lmax \ 5/18. (46)

Also notice that q − r \ a/3, whence lmax − r \ q − r \ a/3. So we can
conclude that

plmax(lmax − r) \
5
18

·
a

3
=

5a

54
.

Now we can estimate the right side and therefore the left side of (45):

lmax − q
2b

[
a

5a/54
=

54
5

.

Since b [ a2/300,

lmax − q [
2a2

300
·
54
5

=
9a

125
.
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Remember that q=1 − a/6. Therefore

1 − lmax=(1 − q) − (lmax − q) \
a

6
−

9a

125
=

71a

750
. (47)

Thus the denominator of (44) is estimated. Now let us estimate the
numerator, i.e., V3, using its explicit representation:

V3=
2b · r

plmax(lmax − (2b/p+r))
. (48)

It is easy to show that r [ 1 − a/2. Therefore the numerator of (48) does
not exceed 2b. To estimate the denominator, remember that lmax \ q=
1 − a/6 and 2b/p=6b [ a2/50 [ a/50. Therefore

2b/p+r [
a

50
+1 −

a

2
.

Using (46), we estimate the denominator:

plmax(lmax − (2b/p+r)) \
5

18
·11 −

a

6
−

a

50
− 1+

a

2
2 \

47a

540
.

Thus

V3 [
2b

47a/540
=

1080b

47a
.

Hence and from (47),

6
5

×
V3

1 − lmax
[

6
5

×
1080b

47a
×

750
71a

[
300b

a2 .

The inequality (35) is proved. Collecting together the equality (21), the
inequalities (28) and (34) summed over k, and (35), we prove Theorem 1.

APPENDIX

The following figure illustrates our constructions.
This figure shows a possible (that is, having a positive probability)

fragment of our process n. The transformation from y to y+1 is done by
Flipb if y is even and by Anna if y is odd. The figure includes six instances
of minuses turning into pluses due to the action of Flipb (for the values
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Figure 1.

1, 2, 3, 4, 6, 7 of x) and two instances of annihilation due to the action of
Anna: the plus at (7, 1) annihilates with the minus at (8, 1) and the plus at
(4, 3) annihilates with the minus at (5, 3). The leftmost and rightmost
columns are filled with zeros since these zeros never were disturbed by our
operators. For the leftmost column it displays the fact that our configura-
tion belongs to W0. The rightmost column with this property exists a.s.
There are four flowers between these columns, namely (1, 4), (2, 4), (3, 4),
(6, 4), marked with the letter F. The path tour(w) surrounding the union of
dual-roots is shown with thick vectors. The vertex V0 is in its left upper
corner. The vertices inside this path (all marked with pluses) are roots.
Dual-roots, that is faces inside tour(w), are separated from each other
by dotted lines. To clarify the action of annihilation, boundaries of two
triangles outside tour(w) (dual of (8, 1) and (5, 3)) are shown by dotted
lines also. Types of steps of tour(w) are shown near each step. These types
form the code of tour(w), which is

11Œ211Œ244Œ211Œ244Œ31Œ11Œ2234Œ44Œ5555.

This code includes all the types except 2Œ and 2ŒŒ and all possible combina-
tions of any two of these types. (We especially chose a configuration with
this property.) The code of bag(w) is the same without fives and
short(code(bag(w))) is 121242124312234.
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